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On the Stochastic Nature of the HETP 

GEORGES BOLON, GEORGES GUIOCHON, and 
LAURENT ,JACOB 
LABORATOIRE DE CHIMIE DE L’ECOLE POLYTECHNIQUE 

PARIS. FRANCE 

Summary 

The validity of several local plate height equations is studied using 
programmed pressure gas diromatography , The appropriate numerical 
methods of calculation as well as the rspcrimental results obtained are 
given. Comparison between calculated data and the experimrntal results 
shows that the theory cannot meet the programmed flow-rate require- 
ments in its present state. Thr, disrrepancy betwren the calculations 
and the experiments comes from the fundamental basis of the theory. 

INTRODUCTION 

The first theoretical papers discussing peak broadening in gas 
chromatography (1 ,  2 )  used aleatory functions of time. The success 
of the H E T P  concept turned it into an aleatory function of space (or 
abscissa along the column) with “local” expressions involving a SO- 

called “decompression” effect (3 ,  4 ) .  The H E T P  is thus described, or 
even defined, as a local physical property of the column and flow 
velocity by the equation: 

d(L75) = H dz 

There was little notice of Kambara’s paper ( 5 )  where an effort had 
been made to get a global effect with time as the variable. 

Until now all the experimental studies carried out to test the various 
HETP equations have been performed in steady-state flow, and the 
number of parameters involved in the equations has made evaluation 
of the theory very unpractical ( 3 ) .  A “modern” plate height equation 
has 6 constants (cf. Ref. 7 and Eq. 1 below) which allow one to  fit 
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700 BOLON, GUIOCHON, AND JACOB 

correctly the experimental data obtained over a broad range of flow 
velocity whether the equation itself is physically sound or not. The 
purpose of this paper is to widen the field of testing plate height 
equations by using pressure programmed chromatography in order to 
see whether the more obvious discrcpancies caii be detected, and if so, 
to find them. 

NUMERICAL METHODS 

The flow-velocity variations a t  any point of the column and thus 
the peak migration in pressure programming ca.n be described by 
solving the following system of partial differential equations for the 
right initial and boundary conditions : 

where Eq. ( 1 )  is Darcy’s law and Eq. (2) the mass balance equation. 
This system can always be solved numerically. I t  requires, however, 
a very long computation, and the use of a few hypotheses can dra- 
matically reduce the computation time. The simplest one H1, supposes 
that the stationary flow prevails at any time, in any place, whatever 
the flow. We call C1 the calculations carried out “exactly,” that is, 
solving the partial differential equations ; and C2 those calculations 
made with hypothesis H1. 

Evaluation of C1 and C2 shows that the relative discrepancy for the 
retention time tR between C1 and C2 is 10% maximum (cf. Table 1) ; 
it drops to  5% only if programming rates that are not too high are 
used. A more drastic hypothesis H2 seems also to be valid: see Ref. (6). 

Going from elution to dispersion is more difficult. The outlet 
velocities calculated by the same methods vary by more than 20% 
and the standard deviations by 5% between C1 and C2. A better 
parameter to use seems to  be the resolution R ( R  = A t , / ( + ,  + +) 
where Atn is the difference between the retention times of the two 
peaks, and #, and I+!I? their base widths) between two adjacent peaks 
with constant a (i3a/ap = 0) .  As shown in Table 1, R varies by only 

Consequently, in what follows we shall use only R to characterize 
peak dispersion. We shall compare experimental data 011 R to values 

2%. 
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STOCHASTIC NATURE OF HETP 701 

TABLE 1 

l’er Cent Uiff ererices between Calculated Values Obtained Using 
Methods C1 and Cp 

Initial programming 
pressure 4 

(abs atm) stationary 2 1 

Retention time t R  0 5 12 
Outlet velocity 0 8 25 
Standard deviation U 0 3 5 
Resolution R 0 2 1 . 5  

The calculations have been performed so that the various programs should give 
similar retention times. This relates the initial inlet pressure to the program rate. 

calculated with hypothesis H1. This hypothesis greatly reduces the 
computation time and also enables us to derive formulas from the 
equations of steady state. 

EXPERIMENTAL 

Apparatus 

A packed capillary column extensively studied in a previous paper 
has been used (Ref. 7, Column 4c). Pressure programming was 
achieved using an Ionics Flow Programmer. The inlet pressure Pi  fol- 
lows an exponential law: 

P ,  = Ptoeat 

where Pzo is the initial inlet pressure and a the programming rate. Pio 
and a can be chosen independently. 

Experiments 

Series of experiments have been performed using as Solute 3 methyl- 
hexane and n-heptane with capacity factors of lc: = 1.67 and IC: = 
2.17, respectively (temp, 5OOC) .  Special attention has been paid to 
vary both a and p i ,  in such a way that various analyses be obtained 
with close retention times of the two compounds, using different 
programs. The results can be plotted in two ways, either the plot of 
R vs. pio or the plot of R vs. t E .  
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Results 

The relative standard deviation of experimental measurements at 
given boundary and initial conditions is less than 2%. The plot of R 
vs. tn gives a single curve, all the points being on it whatever the 
program, with a deviation of 2% in the worst case (cf .  Fig. 1).  

Thus we can write: 

R = $ ( L R )  (3) 

This result has been pointed out by Deiningcr (9). 
Plotting R vs. p,,, yields a lattice produced by horizontal straight 

lines a t  constant retention time and parallel, hyperbolic type curves 
a t  constant a programming rate (cf. Fig. 2 ) .  The horizontal lines 
express the fact that the resolution is a function of the retention time 
only. 

CALCULATION 

The following formulas were used for the HETP,  and were combined 
with the partial differential Eqs. (1) and (2) to calculate the resolu- 
tion of the two peaks a t  the column outlet. 

FR 

FIG. 1 .  Experimental plot of the resolution IL? vs. retention time t R  in 
seconds. The numbers refer to given initial and boundary conditions 

and are the same as in Fig. 2. 
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STOCHASTIC NATURE OF HETP 703 

f "  
2 .  

1 1 I I c 

1 2 3 4 Pi0 (atm) 

FIG. 2. Experimental plot of the resolution R vs. the initial inlet prcs- 
sure P,o (in atm). The dotted lines link the points obtained with the 
same programming rate (exponential law), stationary state : CO, slow 
rate: S ;  medium rate: M ;  fast rate: F, point 11 excepted, which belongs 
to the experimental rate S. Full line I links points with almost identical 

retention times. 

where the al's are constant factors for a given column (aa, a,, and a; 
are not independent) , 

where HI and H 2  are two constant factors. 
Equation (4) stems from Ref. 7 and was originated by Giddings 

(3, 8). It had been fitted successfully with experimental data obtained 
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1 2 3 4 5 6 7 Pi0 (atm.) 

FIG. 3. Calculated plot of resolution R vs. initial inlet pressure 
(absolute atm). Curve 1 is calculated with Eq. (4), Curve 2 with Eq. 
( 5 ) .  Both calculations were carried in the C, way. Dotted line represents 

the resolution in stationary state. 

in steady-state flow with carrier gas velocities in the range 5-400 cm/ 
sec (7 ) .  

Equation ( 5 )  is derived from Ref. 5 using the rcsults in the Numer- 
ical Methods Section above. It is a relationship involving stochastic 
laws in time. Equation (6) gives the same result as Eq. (5)  in sta- 
tionary flow but appears as a stochastic law in space. 

In steady-state flow, both Eqs. ( 5 )  and ( 6 )  give average H values 
expressed as H = AG where B is the carrier gas average velocity. 

Results 

The results of the calculation are given in Fig. 3 where the resolution 
is plotted vs. p i ,  at constant tR.  Curve 1 is obtained when Eq.  (4) is 
used. This curve has a parabolic shape, with a maximum which lies 
25% over the boundary values, one of them corresponding to the 
stationary flow. The experiments discussed above give a constant R 
value, independent of t R .  This discrepancy is well over the experimental 
errors. 
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STOCHASTIC NATURE OF HETP 705 

In the same conditions, Eq. 5 gives a straight line of positive slope 
(Curve 2, Fig. 3) ,  the resolution increasing with decreasing program 
rate. Thus there is a minimum resolution which is 30% smaller than 
the maximum value obtained for stationary flow. This again is in 
disagreement with the experimental results. 

Equation (6) gives results similar to those with Eq. (4). The 
variation in resolution is also about 30%. 

Because in Eq. (4) the coefficients of the two terms proportional to 
the carrier gas velocity, U, are almost equal, we tried adding Eqs. ( 5 )  
and (6). Setting HI =H,, according to the experimental results in 
Ref. 7, leads to a curve which has still a maximum, but the variation 
is reduced to 10%. Setting H I  = 2 H 2  gives a plateau very comparable 
to the one derived from the experimental results. 

Consequently, neither Eq. (4) nor Eq. ( 5 )  gives a satisfactory 
solution to the problem. Unfortunately, they are the only equations 
offered by the present state of the theory. It should be noted that Eqs. 
(5) and (6) ,  although they yield the same average value of H 
in steady-state flow, give opposite results in pressure programming 
for the variation of the resolution with the starting inlet pressure a t  
constant retention time, as the first one gives a minimum in the 
resolution, the second one a maximum. 

CONCLUSION 

The two plate height equations derived from theory and commonly 
used give unsatisfactory results. This seems to prove that neither a 
stochastic law in time nor in length is valid alone. A better fit of the 
experimental results can be obtained by adding the two effects, but no 
theoretical basis could be found to ground a stochastic law in length, 
and there is therefore no more basis to adding it to the stochastic law 
in time. 

This at  least proves that pressure programming can be a better field 
for testing HETP equations than the usual steady-state flow. Further- 
more, it seems necessary to study the diffusion processes in chro- 
matography again. 
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